- 相關(guān)推薦
數(shù)學(xué)解題方法大全(15篇)
數(shù)學(xué)解題方法1
對(duì)于數(shù)學(xué)解題中幾何變換法的知識(shí),同學(xué)們需要掌握下面的內(nèi)容。

幾何變換法
在數(shù)學(xué)問(wèn)題的研究中,,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的`習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。
另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。
上面對(duì)幾何變換法的講解學(xué)習(xí)之后,相信同學(xué)們已經(jīng)很好的掌握了上面的解題方法,希望可以很好的幫助同學(xué)們解答數(shù)學(xué)題目。
數(shù)學(xué)解題方法2
預(yù)防錯(cuò)誤的發(fā)生,是減少初中學(xué)生解題錯(cuò)誤的主要方法。講課之前,教師如果能預(yù)見(jiàn)到學(xué)生學(xué)習(xí)本課內(nèi)容可能產(chǎn)生的錯(cuò)誤,就能夠在課內(nèi)講解時(shí)有意識(shí)地指出并加以強(qiáng)調(diào),從而有效地控制錯(cuò)誤的發(fā)生。
例如,講解方程x/0.7-(0.17-0.2x)/0.03=1之前,要預(yù)見(jiàn)到本題要用分式的基本性質(zhì)與等式的性質(zhì),兩者有可能混淆,因而要在復(fù)習(xí)提 問(wèn)時(shí)準(zhǔn)備一些分?jǐn)?shù)的基本性質(zhì)與等式的性質(zhì)的練習(xí),幫助學(xué)生弄清兩者的不同,避免產(chǎn)生混亂與錯(cuò)誤。
因此備課時(shí),要仔細(xì)研究教科書(shū)正文中的防錯(cuò)文字、例題后的.注意、小結(jié)與復(fù)習(xí)中的應(yīng)該注意的幾個(gè)問(wèn)題等,同時(shí)還要揣摸學(xué)生學(xué)習(xí)本課內(nèi)容的心理過(guò)程,授業(yè)解惑,使學(xué)生預(yù)先明了容易出錯(cuò)之處,防患于未然。
如果學(xué)生出現(xiàn)問(wèn)題而未查覺(jué),錯(cuò)誤沒(méi)有得到及時(shí)的糾正,則遺患無(wú)窮,不僅影響當(dāng)時(shí)的學(xué)習(xí),還會(huì)影響以后的學(xué)習(xí)。因此,預(yù)見(jiàn)錯(cuò)誤并有效防范能夠?yàn)榻沂惧e(cuò)誤、消滅錯(cuò)誤打下基礎(chǔ)。
通過(guò)上面對(duì)減少初中數(shù)學(xué)解題錯(cuò)誤方法的知識(shí)內(nèi)容講解,相信可以很好的幫助同學(xué)們對(duì)數(shù)學(xué)題目的解答,同學(xué)們認(rèn)真學(xué)習(xí)哦。
數(shù)學(xué)解題方法3
一、考試內(nèi)容
導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義,幾種常見(jiàn)函數(shù)的導(dǎo)數(shù);
兩個(gè)函數(shù)的和、差、基本導(dǎo)數(shù)公式,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,函數(shù)的最大值和最小值。
二、熱點(diǎn)題型分析
題型一:利用導(dǎo)數(shù)研究函數(shù)的極值、最值。
1. 在區(qū)間上的最大值是 2
2.已知函數(shù)處有極大值,則常數(shù)c= 6 ;
3.函數(shù)有極小值 -1 ,極大值 3
題型二:利用導(dǎo)數(shù)幾何意義求切線方程
1.曲線在點(diǎn)處的切線方程是
2.若曲線在P點(diǎn)處的切線平行于直線,則P點(diǎn)的坐標(biāo)為 (1,0)
3.若曲線的一條切線與直線垂直,則的方程為
4.求下列直線的方程:
(1)曲線在P(-1,1)處的'切線; (2)曲線過(guò)點(diǎn)P(3,5)的切線;
解:(1)
所以切線方程為
(2)顯然點(diǎn)P(3,5)不在曲線上,所以可設(shè)切點(diǎn)為,則①又函數(shù)的導(dǎo)數(shù)為,
所以過(guò)點(diǎn)的切線的斜率為,又切線過(guò)、P(3,5)點(diǎn),所以有②,由①②聯(lián)立方程組得,,即切點(diǎn)為(1,1)時(shí),切線斜率為;當(dāng)切點(diǎn)為(5,25)時(shí),切線斜率為;所以所求的切線有兩條,方程分別為
題型三:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值、最值
1.已知函數(shù)的切線方程為y=3x+1
(Ⅰ)若函數(shù)處有極值,求的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,求函數(shù)在[-3,1]上的最大值;
(Ⅲ)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍
解:(1)由
過(guò)的切線方程為:
而過(guò)
故
∵ ③
由①②③得 a=2,b=-4,c=5
(2)
當(dāng)
又在[-3,1]上最大值是13。
(3)y=f(x)在[-2,1]上單調(diào)遞增,又由①知2a+b=0。
依題意在[-2,1]上恒有0,即
、佼(dāng);
、诋(dāng);
、郛(dāng)
綜上所述,參數(shù)b的取值范圍是
2.已知三次函數(shù)在和時(shí)取極值,且.
(1) 求函數(shù)的表達(dá)式;
(2) 求函數(shù)的單調(diào)區(qū)間和極值;
(3) 若函數(shù)在區(qū)間上的值域?yàn),試求、?yīng)滿足的條件.
解:(1) ,
由題意得,是的兩個(gè)根,解得,.
數(shù)學(xué)解題方法4
1、對(duì)照法
如何正確地理解和運(yùn)用數(shù)學(xué)概念?小學(xué)數(shù)學(xué)常用的方法就是對(duì)照法。根據(jù)數(shù)學(xué)題意,對(duì)照概念、性質(zhì)、定律、法則、公式、名詞、術(shù)語(yǔ)的含義和實(shí)質(zhì),依靠對(duì)數(shù)學(xué)知識(shí)的理解、記憶、辨識(shí)、再現(xiàn)、遷移來(lái)解題的方法叫做對(duì)照法。
這個(gè)方法的思維意義就在于,訓(xùn)練學(xué)生對(duì)數(shù)學(xué)知識(shí)的正確理解、牢固記憶、準(zhǔn)確辨識(shí)。
例1:三個(gè)連續(xù)自然數(shù)的和是18,則這三個(gè)自然數(shù)從小到大分別是多少?
對(duì)照自然數(shù)的概念和連續(xù)自然數(shù)的性質(zhì)可以知道:三個(gè)連續(xù)自然數(shù)和的平均數(shù)就是這三個(gè)連續(xù)自然數(shù)的中間那個(gè)數(shù)。
例2:判斷題:能被2除盡的數(shù)一定是偶數(shù)。
這里要對(duì)照“除盡”和“偶數(shù)”這兩個(gè)數(shù)學(xué)概念。只有這兩個(gè)概念全理解了,才能做出正確判斷。
2、公式法
運(yùn)用定律、公式、規(guī)則、法則來(lái)解決問(wèn)題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡(jiǎn)便、有效,也是小學(xué)生學(xué)習(xí)數(shù)學(xué)必須學(xué)會(huì)和掌握的一種方法。但一定要讓學(xué)生對(duì)公式、定律、規(guī)則、法則有一個(gè)正確而深刻的理解,并能準(zhǔn)確運(yùn)用。
例3:計(jì)算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………運(yùn)用乘法分配律
=59×50…………運(yùn)用加法計(jì)算法則
=(60-1)×50…………運(yùn)用數(shù)的組成規(guī)則
=60×50-1×50…………運(yùn)用乘法分配律
=3000-50…………運(yùn)用乘法計(jì)算法則
=2950…………運(yùn)用減法計(jì)算法則
3、比較法
通過(guò)對(duì)比數(shù)學(xué)條件及問(wèn)題的異同點(diǎn),研究產(chǎn)生異同點(diǎn)的原因,從而發(fā)現(xiàn)解決問(wèn)題的方法,叫比較法。
比較法要注意:
(1)找相同點(diǎn)必找相異點(diǎn),找相異點(diǎn)必找相同點(diǎn),不可或缺,也就是說(shuō),比較要完整。
(2)找聯(lián)系與區(qū)別,這是比較的實(shí)質(zhì)。
(3)必須在同一種關(guān)系下(同一種標(biāo)準(zhǔn))進(jìn)行比較,這是“比較”的基本條件。
(4)要抓住主要內(nèi)容進(jìn)行比較,盡量少用“窮舉法”進(jìn)行比較,那樣會(huì)使重點(diǎn)不突出。
(5)因?yàn)閿?shù)學(xué)的嚴(yán)密性,決定了比較必須要精細(xì),往往一個(gè)字,一個(gè)符號(hào)就決定了比較結(jié)論的對(duì)或錯(cuò)。
例4:填空:0.75的位是(),這個(gè)數(shù)小數(shù)部分的位是();十分位的數(shù)4與十位上的數(shù)4相比,它們的()相同,()不同,前者比后者小了()。
這道題的意圖就是要對(duì)“一個(gè)數(shù)的位和小數(shù)部分的位的區(qū)別”,還有“數(shù)位和數(shù)值”的區(qū)別等。
例5:六年級(jí)同學(xué)種一批樹(shù),如果每人種5棵,則剩下75棵樹(shù)沒(méi)有種;如果每人種7棵,則缺少15棵樹(shù)苗。六年級(jí)有多少學(xué)生?
這是兩種方案的比較。相同點(diǎn)是:六年級(jí)人數(shù)不變;相異點(diǎn)是:兩種方案中的條件不一樣。
找聯(lián)系:每人種樹(shù)棵數(shù)變化了,種樹(shù)的總棵數(shù)也發(fā)生了變化。
找解決思路(方法):每人多種7-5=2(棵),那么,全班就多種了75+15=90(棵),全班人數(shù)為90÷2=45(人)。
4、分類法
根據(jù)事物的共同點(diǎn)和差異點(diǎn)將事物區(qū)分為不同種類的方法,叫做分類法。分類是以比較為基礎(chǔ)的。依據(jù)事物之間的共同點(diǎn)將它們合為較大的類,又依據(jù)差異點(diǎn)將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復(fù)、不遺漏、不交叉。
例6:自然數(shù)按約數(shù)的個(gè)數(shù)來(lái)分,可分成幾類?
答:可分為三類。(1)只有一個(gè)約數(shù)的數(shù),它是一個(gè)單位數(shù),只有一個(gè)數(shù)1;(2)有兩個(gè)約數(shù)的,也叫質(zhì)數(shù),有無(wú)數(shù)個(gè);(3)有三個(gè)約數(shù)的,也叫合數(shù),也有無(wú)數(shù)個(gè)。
5、分析法
把整體分解為部分,把復(fù)雜的事物分解為各個(gè)部分或要素,并對(duì)這些部分或要素進(jìn)行研究、推導(dǎo)的一種思維方法叫做分析法。
依據(jù):總體都是由部分構(gòu)成的。
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開(kāi)來(lái),再分別對(duì)照要求,從而理順解決問(wèn)題的思路。
也就是從求解的問(wèn)題出發(fā),正確選擇所需要的兩個(gè)條件,依次推導(dǎo),一直到問(wèn)題得到解決為止,這種解題模式是“由果溯因”。分析法也叫逆推法。常用“枝形圖”進(jìn)行圖解思路。
例7:玩具廠計(jì)劃每天生產(chǎn)200件玩具,已經(jīng)生產(chǎn)了6天,共生產(chǎn)1260件。問(wèn)平均每天超過(guò)計(jì)劃多少件?
思路:要求平均每天超過(guò)計(jì)劃多少件,必須知道:計(jì)劃每天生產(chǎn)多少件和實(shí)際每天生產(chǎn)多少件。計(jì)劃每天生產(chǎn)多少件已知,實(shí)際每天生產(chǎn)多少件,題中沒(méi)有告訴,還得求出來(lái)。要求實(shí)際每天生產(chǎn)多少件玩具,必須知道:實(shí)際生產(chǎn)多少天,和實(shí)際生產(chǎn)多少件,這兩個(gè)條件題中都已知。
6、綜合法
把對(duì)象的各個(gè)部分或各個(gè)方面或各個(gè)要素聯(lián)結(jié)起來(lái),并組合成一個(gè)有機(jī)的整體來(lái)研究、推導(dǎo)和一種思維方法叫做綜合法。
用綜合法解數(shù)學(xué)題時(shí),通常把各個(gè)題知看作是部分(或要素),經(jīng)過(guò)對(duì)各部分(或要素)相互之間內(nèi)在聯(lián)系一層層分析,逐步推導(dǎo)到題目要求,所以,綜合法的解題模式是執(zhí)因?qū)Ч,也叫順推法。這種方法適用于已知條件較少,數(shù)量關(guān)系比較簡(jiǎn)單的數(shù)學(xué)題。
例8:兩個(gè)質(zhì)數(shù),它們的差是小于30的合數(shù),它們的和即是11的倍數(shù)又是小于50的偶數(shù)。寫(xiě)出適合上面條件的各組數(shù)。
思路:11的倍數(shù)同時(shí)小于50的偶數(shù)有22和44。
兩個(gè)數(shù)都是質(zhì)數(shù),而和是偶數(shù),顯然這兩個(gè)質(zhì)數(shù)中沒(méi)有2。
和是22的`兩個(gè)質(zhì)數(shù)有:3和19,5和17。它們的差都是小于30的合數(shù)嗎?
和是44的兩個(gè)質(zhì)數(shù)有:3和41,7和37,13和31。它們的差是小于30的合數(shù)嗎?
這就是綜合法的思路。
7、方程法
用字母表示未知數(shù),并根據(jù)等量關(guān)系列出含有字母的表達(dá)式(等式)。列方程是一個(gè)抽象概括的過(guò)程,解方程是一個(gè)演繹推導(dǎo)的過(guò)程。方程法的特點(diǎn)是把未知數(shù)等同于已知數(shù)看待,參與列式、運(yùn)算,克服了算術(shù)法必須避開(kāi)求知數(shù)來(lái)列式的不足。有利于由已知向未知的轉(zhuǎn)化,從而提高了解題的效率和正確率。
例9:一個(gè)數(shù)擴(kuò)大3倍后再增加100,然后縮小2倍后再減去36,得50。求這個(gè)數(shù)。
例10:一桶油,第一次用去40%,第二次比第一次多用10千克,還剩余6千克。這桶油重多少千克?
這兩題用方程解就比較容易。
8、參數(shù)法
用只參與列式、運(yùn)算而不需要解出的字母或數(shù)表示有關(guān)數(shù)量,并根據(jù)題意列出算式的一種方法叫做參數(shù)法。參數(shù)又叫輔助未知數(shù),也稱中間變量。參數(shù)法是方程法延伸、拓展的產(chǎn)物。
例11:汽車爬山,上山時(shí)平均每小時(shí)行15千米,下山時(shí)平均每小時(shí)行駛10千米,問(wèn)汽車的平均速度是每小時(shí)多少千米?
上下山的平均速度不能用上下山的速度和除以2。而應(yīng)該用上下山的路程÷2。
例12:一項(xiàng)工作,甲單獨(dú)做要4天完成,乙單獨(dú)做要5天完成。兩人合做要多少天完成?
其實(shí),把總工作量看作“1”,這個(gè)“1”就是參數(shù),如果把總工作量看作“2、3、4……”都可以,只不過(guò)看作“1”運(yùn)算最方便。
9、排除法
排除對(duì)立的結(jié)果叫做排除法。
排除法的邏輯原理是:任何事物都有其對(duì)立面,在有正確與錯(cuò)誤的多種結(jié)果中,一切錯(cuò)誤的結(jié)果都排除了,剩余的只能是正確的結(jié)果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
例13:為什么說(shuō)除2外,所有質(zhì)數(shù)都是奇數(shù)?
這就要用反證法:比2大的所有自然數(shù)不是質(zhì)數(shù)就是合數(shù)。假設(shè):比2大的質(zhì)數(shù)有偶數(shù),那么,這個(gè)偶數(shù)一定能被2整除,也就是說(shuō)它一定有約數(shù)2。一個(gè)數(shù)的約數(shù)除了1和它本身外,還有別的約數(shù)(約數(shù)2),這個(gè)數(shù)一定是合數(shù)而不是質(zhì)數(shù)。這和原來(lái)假定是質(zhì)數(shù)對(duì)立(矛盾)。所以,原來(lái)假設(shè)錯(cuò)誤。
例14:判斷題:(1)同一平面上兩條直線不平行,就一定相交。(錯(cuò))
(2)分?jǐn)?shù)的分子和分母同乘以或同除以一個(gè)相同的數(shù),分?jǐn)?shù)大小不變。(錯(cuò))
10、特例法
對(duì)于涉及一般性結(jié)論的題目,通過(guò)取特殊值或畫(huà)特殊圖或定特殊位置等特例來(lái)解題的方法叫做特例法。特例法的邏輯原理是:事物的一般性存在于特殊性之中。
例15:大圓半徑是小圓半徑的2倍,大圓周長(zhǎng)是小圓周長(zhǎng)的(x)倍,大圓面積是小圓面積的(x)倍。
可以取小圓半徑為1,那么大圓半徑就是2。計(jì)算一下,就能得出正確結(jié)果。
例16:正方形的面積和邊長(zhǎng)成正比例嗎?
如果正方形的邊長(zhǎng)為a,面積為s。那么,s:a=a(比值不定)
所以,正方形的面積和邊長(zhǎng)不成正比例。
11、化歸法
通過(guò)某種轉(zhuǎn)化過(guò)程,把問(wèn)題歸結(jié)到一類典型問(wèn)題來(lái)解題的方法叫做化歸法;瘹w是知識(shí)遷移的重要途徑,也是擴(kuò)展、深化認(rèn)知的首要步驟;瘹w法的邏輯原理是,事物之間是普遍聯(lián)系的。化歸法是一種常用的辯證思維方法。
例17:某制藥廠生產(chǎn)一批防“非典”藥,原計(jì)劃25人14天完成,由于急需,要提前4天完成,需要增加多少人?
這就需要在考慮問(wèn)題時(shí),把“總工作日”化歸為“總工作量”。
例18:超市運(yùn)來(lái)馬鈴薯、西紅柿、豇豆三種蔬菜,馬鈴薯占25%,西紅柿和豇豆的重量比是4:5,已知豇豆比馬鈴薯多36千克,超市運(yùn)來(lái)西紅柿多少千克?
需要把“西紅柿和豇豆的重量比4:5”化歸為“各占總重量的百分之幾”,也就是把比例應(yīng)用題化歸為分?jǐn)?shù)應(yīng)用題。
數(shù)學(xué)解題方法5
1.仔細(xì)審題爭(zhēng)取“一遍成”
拿到試卷后,先要通覽,摸透題情。一是看題量多少,有無(wú)印刷問(wèn)題;二是對(duì)通篇試卷的難易做粗略的了解。
審題要逐字逐句搞清題意,似曾相識(shí)的題目更要注意異同,從多層面挖掘隱含條件及條件間內(nèi)在聯(lián)系。吃透題意,例如:“兩圓相切”,就包括外切和內(nèi)切,缺一不可。
中考的考題是由易到難,順利解答幾個(gè)簡(jiǎn)單題目,可以使考生信心倍增。從近年來(lái)中考數(shù)學(xué)卷面來(lái)看,考試時(shí)間很緊張,考生幾乎沒(méi)有時(shí)間檢查,這就要求在答卷時(shí)認(rèn)真準(zhǔn)確,爭(zhēng)取“一遍成”。
2.遇到難題要敢于暫時(shí)“放棄”
遇到難題要敢于暫時(shí)“放棄”,不要浪費(fèi)太多時(shí)間。
一般來(lái)說(shuō),選擇題和填空題,優(yōu)秀考生答每道題的時(shí)間不超過(guò)40秒,差一點(diǎn)的考生不超過(guò)2分鐘。把會(huì)做的題目解答完后,再回頭集中精力解決難題。在答題時(shí)要合理安排時(shí)間,不要在某個(gè)卡住的題上打“持久戰(zhàn)”。
3.電腦閱卷書(shū)寫(xiě)要工整
卷面書(shū)寫(xiě)既要速度快,又要整潔、準(zhǔn)確。電腦閱卷要求考生填涂答題卡準(zhǔn)確,字跡工整,大題步驟明晰。
草稿紙書(shū)寫(xiě)要有規(guī)劃,便于回頭檢查。不少計(jì)算題的失誤,都是因?yàn)闀?shū)寫(xiě)太潦草。正確的做法是:在答題卡上列出詳細(xì)的步驟,不要跳步。只有少量數(shù)學(xué)運(yùn)算才用草稿紙。
事實(shí)證明:踏實(shí)地完成每步運(yùn)算,解題速度就快;把每個(gè)會(huì)做的題目做對(duì),考分就高。
4.三大方法答選擇題
答選擇題可用三大方法。
排除法:根據(jù)題設(shè)和有關(guān)知識(shí),排除明顯不正確選項(xiàng)。
特殊值法:根據(jù)題目中的條件,選取某個(gè)符合條件的特殊值或作出特殊圖形進(jìn)行計(jì)算、推理的方法。用特殊值法解題要注意所選取的值要符合條件。
猜想、測(cè)量的方法:直接觀察或得出結(jié)果。這類方法在近年來(lái)的中考題中常被運(yùn)用于探索規(guī)律性的問(wèn)題。
5.直接法和圖解法答填空題
直接法和圖解法是填空題的基本解法。
直接法:根據(jù)題干所給條件,直接計(jì)算、推理,得出正確答案。
圖解法:根據(jù)題干提供信息,繪出圖形,從而得出正確的答案。
填空題雖然多是中低檔題,但不少考生在答題時(shí)往往出現(xiàn)失誤。首先,應(yīng)按題干的`要求填空,如一些附加條件,如精確到哪一位,有無(wú)單位。再者應(yīng)認(rèn)真分析題目的隱含條件。填空題不要求寫(xiě)出解題過(guò)程,填錯(cuò)、部分填對(duì)都將計(jì)零分。
6.注意大題解題過(guò)程
靠準(zhǔn)確完整的數(shù)學(xué)語(yǔ)言表述,才能避免出現(xiàn)“會(huì)而不對(duì)”“對(duì)而不全”的情況。代數(shù)論證中“以圖代證”,盡管解題思路正確甚至很巧妙,但是由于不善于把“圖形語(yǔ)言”準(zhǔn)確地轉(zhuǎn)譯為“文字語(yǔ)言”,得分會(huì)少得可憐!靶闹杏袛(shù)”卻說(shuō)不清楚,扣分者也不在少數(shù)。
最后幾題要注意這些點(diǎn):化簡(jiǎn)正確、體現(xiàn)三角函數(shù)值、代值過(guò)程、畫(huà)圖題是否畫(huà)在格點(diǎn)上、畫(huà)向量注意方向、證明步驟一定完整、用到三角函數(shù)一定準(zhǔn)確、分析好圖表、關(guān)鍵性步驟不能缺少、注意有無(wú)相等關(guān)系、注意等腰的分類、相似的分類等。
數(shù)學(xué)解題方法6
不等式(組)模型
解題思路:合理設(shè)未知數(shù),根據(jù)已知的或隱含的不等關(guān)系,列出含有未知數(shù)的不等式(組),然后解不等式(組),最后驗(yàn)證解的合理性.
通過(guò)上面對(duì)不等式(組)模型解題方法的講解,相信同學(xué)們可以很好的掌握上面的解題方法了。
初中數(shù)學(xué)解題方法之常用的公式
下面是對(duì)數(shù)學(xué)常用的`公式的講解,同學(xué)們認(rèn)真學(xué)習(xí)哦。
對(duì)于常用的公式
如數(shù)學(xué)中的乘法公式、三角函數(shù)公式,常用的數(shù)字,如11~25的平方,特殊角的三角函數(shù)值,化學(xué)中常用元素的化學(xué)性質(zhì)、化合價(jià)以及化學(xué)反應(yīng)方程式等等,都要熟記在心,需用時(shí)信手拈來(lái),則對(duì)提高演算速度極為有利。
數(shù)學(xué)解題方法7
【摘 要】在數(shù)學(xué)教學(xué)中應(yīng)鼓勵(lì)學(xué)生閱讀。一道好題,一種妙解,一絲聯(lián)系,一點(diǎn)變化都可能給你的解答帶來(lái)簡(jiǎn)便。因此,培養(yǎng)學(xué)生的解題能力尤其顯得重要。
【關(guān)鍵詞】初中數(shù)學(xué);解題能力;解題思路;解題策略
在教學(xué)中,要提高學(xué)生的解題能力,除了抓好基礎(chǔ)知識(shí)、基本能力的學(xué)習(xí)與培養(yǎng)外,更重要的培養(yǎng)途徑就是解題實(shí)踐,就是遵循科學(xué)的解題順序、有目的、有計(jì)劃地引導(dǎo)學(xué)生“在游泳中學(xué)會(huì)游泳”,在親自參與的解題實(shí)踐過(guò)程中,學(xué)會(huì)解題,從中獲得能力。下面就圍繞解題的一般程序,來(lái)討論如何培養(yǎng)學(xué)生的解題能力。
一、養(yǎng)成仔細(xì)、認(rèn)真地審查題意的習(xí)慣
仔細(xì)、認(rèn)真地審題,提高審題能力是解題的首要前提。因此,教學(xué)中要求學(xué)生養(yǎng)成仔細(xì)、認(rèn)真的審題習(xí)慣,就是要對(duì)問(wèn)題的條件、目標(biāo)及有關(guān)的全部情況進(jìn)行整體認(rèn)識(shí),充分理解題意,把握本質(zhì)和聯(lián)系,不斷提高審題能力。具體地說(shuō),就是要做到以下四項(xiàng)要求:
l.了解題目的文字?jǐn)⑹觯宄乩斫馊織l件和目標(biāo),并能準(zhǔn)確地復(fù)述問(wèn)題、畫(huà)出必要的準(zhǔn)確圖形或示意圖;
2.整體考慮題目,挖掘題設(shè)條件的內(nèi)涵、溝通聯(lián)系、審清問(wèn)題的結(jié)構(gòu)特征。必要時(shí),要會(huì)對(duì)條件或目標(biāo)進(jìn)行化簡(jiǎn)或轉(zhuǎn)換,以利于解法的探索;
3.發(fā)現(xiàn)比較隱蔽的條件;
4.判明題型,預(yù)見(jiàn)解題的策略原則。
以上具體要求中,前兩項(xiàng)是基本的,后兩項(xiàng)是較高的。事實(shí)上,審題能力主要體現(xiàn)在對(duì)題目的整體認(rèn)識(shí)、對(duì)條件和目標(biāo)的化簡(jiǎn)與轉(zhuǎn)換以及發(fā)現(xiàn)隱蔽條件等方面的.能力上。
例:已知a,b,c都是實(shí)數(shù),求證;2a-(b+c),2b-(a+c),2c-(b+c)三個(gè)數(shù)中至少有一個(gè)數(shù)不大于零,而且至少有一個(gè)數(shù)不少于零。
如果審題中能考慮到“所證的三個(gè)數(shù)之和正好等于零”這一整體特征,則不難用反證法很容易地得出正確判斷,使問(wèn)題得到解決。
二、分析解題思路、探求解題途徑,發(fā)現(xiàn)解題規(guī)律、掌握解題方法是培養(yǎng)學(xué)生解題能力的核心和關(guān)鍵
分析思路、探求途徑是解題教學(xué)的重點(diǎn),也是提高學(xué)生解題能力的核心、關(guān)鍵所在。這就要求我們教師在教學(xué)中做好以下幾方面的工作:
1.幫助學(xué)生掌握解題的科學(xué)程序。就是把整個(gè)解題過(guò)程分為前述的四個(gè)程序進(jìn)行。掌握了這個(gè)科學(xué)程序,使解題過(guò)程程序化,就能使學(xué)生對(duì)解題總過(guò)程有一個(gè)有序框架,形成一種思維定勢(shì)和化歸的趨勢(shì),做到目標(biāo)清楚、思維方向明確。為此,在教學(xué)中對(duì)于所有例題的講解及示范解題,都要充分展現(xiàn)解題過(guò)程的四個(gè)程序及每個(gè)程序進(jìn)行的過(guò)程,并且不斷給以總結(jié)、反復(fù)強(qiáng)調(diào)。使學(xué)生在日積月累的熏陶中去掌握解題程序,領(lǐng)悟各程序中思維的方向和思維的進(jìn)程。當(dāng)然,這樣做就必須要求教師事先要對(duì)例題的選取和設(shè)計(jì)進(jìn)行深入研究,對(duì)例題的目的意圖、隱含條件的析取、干擾信息的排除、思維偏差的糾正、解題策略的制定、解題關(guān)鍵的把握以及解題后的開(kāi)拓和引申等都要做到心中有數(shù)。只要這樣,才能避免就題論題、就事論事、無(wú)法展現(xiàn)思維過(guò)程的形式主義教學(xué),從而真正達(dá)到解題教學(xué)的要求。
2.在教學(xué)中,必須結(jié)合例題的示范教學(xué),有計(jì)劃、有目的地幫助學(xué)生掌握解決數(shù)學(xué)問(wèn)題的策略原則,培養(yǎng)和提高學(xué)生的探索能力。
3.幫助學(xué)生掌握轉(zhuǎn)化的數(shù)學(xué)方法。在教學(xué)中結(jié)合例題教學(xué),幫助學(xué)生掌握一些常用的變形手段和轉(zhuǎn)化方法,幫助學(xué)生理解這些方法的原理,把握方法的要點(diǎn)、作用、使用條件、使用范圍以及這些方法的“變式”,學(xué)會(huì)靈活運(yùn)用。
三、理順解題思路、嚴(yán)格依據(jù)邏輯規(guī)律表達(dá)出規(guī)范化的解題過(guò)程是培養(yǎng)學(xué)生良好的解題習(xí)慣的重要途徑
一般來(lái)說(shuō),各種形式的數(shù)學(xué)習(xí)題都有一定的解答格式,解題中要嚴(yán)格按標(biāo)準(zhǔn)格式表達(dá),當(dāng)然,根據(jù)學(xué)生的不同學(xué)習(xí)階段,標(biāo)準(zhǔn)格式的詳略可以不盡相同,但邏輯順序不能違反,證明推理中關(guān)鍵步驟的大前提必須表達(dá)清楚。這樣做,可以培養(yǎng)和提高學(xué)生的邏輯思維能力和邏輯表達(dá)能力,同時(shí)也有助于學(xué)生解題能力的提高。
四、回顧與探討解題過(guò)程,養(yǎng)成解題后的反思習(xí)慣,也是提高學(xué)生解題能力的基本途徑
解題后的回顧,包括檢驗(yàn)結(jié)果、討論解法和推廣三個(gè)方面。
1.檢驗(yàn)結(jié)果。主要是核查結(jié)果是否正確無(wú)誤,推理是否有據(jù),解答是否詳盡無(wú)。
2.討論解法。主要是改進(jìn)解法或?qū)で笃渌煌慕夥ǎ环治鼋夥ǖ奶卣、關(guān)鍵和主要思維過(guò)程;總結(jié)規(guī)律,概括為一般性的解法定勢(shì)等。這將有利于開(kāi)拓思維、積累經(jīng)驗(yàn)、整理方法,有助于增強(qiáng)思維的靈活性和發(fā)展提高解題能力。
3.推廣。解題后一般可朝三個(gè)方向進(jìn)行推廣。一是一般化,就是減弱問(wèn)題的條件,把結(jié)果推廣到條件更一般的情形,從而研究結(jié)論會(huì)有什么變化;二是特殊化,就是強(qiáng)化問(wèn)題的條件,把結(jié)論用于條件更特殊的情形,從而研究結(jié)論又會(huì)有何變化;三是“發(fā)展性推廣”,就是在原有條件、結(jié)論的基礎(chǔ)上,進(jìn)一步發(fā)展其空間形式或數(shù)量關(guān)系所得到的變化,它既不是一般化,也不是特殊化。例如,證明“任意四邊形的四邊中點(diǎn)順次連結(jié)成一個(gè)平行四邊形”以后,可進(jìn)一步發(fā)展推廣為:“這個(gè)平行四邊形的周長(zhǎng)等于原四邊形的兩條對(duì)角線長(zhǎng)之和”。
解題后的推廣,也是培養(yǎng)學(xué)生積極思維、發(fā)明發(fā)現(xiàn)、創(chuàng)造突破能力的有效途徑。如果能讓學(xué)生養(yǎng)成習(xí)慣,那么就可以在解題訓(xùn)練中跳出“題!,通過(guò)少而精的解題,收到很大的效益。
五、合理調(diào)控解題活動(dòng),全面提高學(xué)生的解題能力素質(zhì)
要提高學(xué)生的解題能力,在教學(xué)中應(yīng)該發(fā)揮教師的主導(dǎo)作用,引導(dǎo)學(xué)生發(fā)揮積極主動(dòng)參與的主體作用。具體地說(shuō),應(yīng)該做好以下工作:
1.創(chuàng)設(shè)情境、調(diào)動(dòng)學(xué)生積極思維,培養(yǎng)他們的學(xué)習(xí)興趣,培養(yǎng)他們獨(dú)立進(jìn)行解題的能力。
2.有系統(tǒng)、有層次地精心選配習(xí)題,合理組織訓(xùn)練、重點(diǎn)培養(yǎng)學(xué)生的基本數(shù)學(xué)思想和數(shù)學(xué)方法及其運(yùn)用的能力。一般來(lái)說(shuō),解題教學(xué)中,除了要求例題的選配要具有目的性、典型性、啟發(fā)性和延伸性等特點(diǎn)外,一般還應(yīng)提供學(xué)生獨(dú)立練習(xí)的習(xí)題,在選配時(shí)注意適用性、鞏固性、實(shí)踐性和發(fā)展性的原則。
總之,培養(yǎng)學(xué)生的解題能力要通過(guò)掌握科學(xué)的解題程序、掌握解題的策略和方法、技巧;要通過(guò)我們教師引導(dǎo)下的主動(dòng)參與活動(dòng);通過(guò)創(chuàng)設(shè)問(wèn)題情境、調(diào)動(dòng)學(xué)生的智力與非智力因素等基本途徑。因此,要使學(xué)生的解題能力達(dá)到較高水平,并上升為一種創(chuàng)造才能,就要在整個(gè)的教學(xué)的過(guò)程中,始終都要注意培養(yǎng)和發(fā)展學(xué)生解題能力的各種因素,注意提高學(xué)生的整體素質(zhì)。只有這樣,解題能力的提高才有根底和源泉,解題的功底才扎實(shí)。
數(shù)學(xué)解題方法8
1、函數(shù)
函數(shù)題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2.方程或不等式
如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
3.初等函數(shù)
面對(duì)含有參數(shù)的初等函數(shù)來(lái)說(shuō),在研究的時(shí)候應(yīng)該抓住參數(shù)沒(méi)有影響到的不變的性質(zhì)。如所過(guò)的定點(diǎn),二次函數(shù)的對(duì)稱軸或是……;
4.選擇與填空中的不等式
選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5.參數(shù)的取值范圍
求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的定義域或是值域或是解不等式完成,在對(duì)式子變形的過(guò)程中,優(yōu)先選擇分離參數(shù)的方法;
6.恒成立問(wèn)題
恒成立問(wèn)題或是它的反面,可以轉(zhuǎn)化為最值問(wèn)題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
7.圓錐曲線問(wèn)題
圓錐曲線的題目?jī)?yōu)先選擇它們的定義完成,直線與圓錐曲線相交問(wèn)題,若與弦的中點(diǎn)有關(guān),選擇設(shè)而不求點(diǎn)差法,與弦的中點(diǎn)無(wú)關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式;
8.曲線方程
求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點(diǎn)、列式、化簡(jiǎn)(注意去掉不符合條件的特殊點(diǎn));
9.離心率
求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10.三角函數(shù)
三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的`題目,注意向量角的范圍;
11.數(shù)列問(wèn)題
數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時(shí)候注意使用通項(xiàng)公式及前n項(xiàng)和公式,體會(huì)方程的思想;
12.立體幾何問(wèn)題
立體幾何第一問(wèn)如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問(wèn)開(kāi)始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計(jì)算注意系數(shù)1/3,而三角形面積的計(jì)算注意系數(shù)1/2 ;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
13.導(dǎo)數(shù)
導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問(wèn)中找到突破口,必要時(shí)應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點(diǎn)是否在曲線上;
14.概率
概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫(xiě)出使用公式的理由,當(dāng)然要注意步驟的多少?zèng)Q定解答的詳略;如果有分布列,則概率和為1是檢驗(yàn)正確與否的重要途徑;
15.換元法
遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來(lái)完成;
16.二項(xiàng)分布
注意概率分布中的二項(xiàng)分布,二項(xiàng)式定理中的通項(xiàng)公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫(xiě)法,取值范或是不等式的解的端點(diǎn)能否取到需單獨(dú)驗(yàn)證,用點(diǎn)斜式或斜截式方程的時(shí)候考慮斜率是否存在等;
17.絕對(duì)值問(wèn)題
絕對(duì)值問(wèn)題優(yōu)先選擇去絕對(duì)值,去絕對(duì)值優(yōu)先選擇使用定義;
18.平移
與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成;
19.中心對(duì)稱
關(guān)于中心對(duì)稱問(wèn)題,只需使用中點(diǎn)坐標(biāo)公式就可以,關(guān)于軸對(duì)稱問(wèn)題,注意兩個(gè)等式的運(yùn)用:一是垂直,一是中點(diǎn)在對(duì)稱軸上。
數(shù)學(xué)解題方法9
【含義】
這是一種在生產(chǎn)經(jīng)營(yíng)中經(jīng)常遇到的問(wèn)題,包括成本、利潤(rùn)、利潤(rùn)率和虧損、虧損率等方面的問(wèn)題。
【數(shù)量關(guān)系】
利潤(rùn)=售價(jià)-進(jìn)貨價(jià)
利潤(rùn)率=(售價(jià)-進(jìn)貨價(jià))÷進(jìn)貨價(jià)×100%
售價(jià)=進(jìn)貨價(jià)×(1+利潤(rùn)率)
虧損=進(jìn)貨價(jià)-售價(jià)
虧損率=(進(jìn)貨價(jià)-售價(jià))÷進(jìn)貨價(jià)×100%
【解題思路和方法】
簡(jiǎn)單的題目可以直接利用公式,復(fù)雜的題目變通后利用公式。
例1 某商品的平均價(jià)格在一月份上調(diào)了10%,到二月份又下調(diào)了10%,這種商品從原價(jià)到二月份的價(jià)格變動(dòng)情況如何?
解 設(shè)這種商品的原價(jià)為1,則一月份售價(jià)為(1+10%),二月份的售價(jià)為(1+10%)×(1-10%),所以二月份售價(jià)比原價(jià)下降了
1-(1+10%)×(1-10%)=1%
答:二月份比原價(jià)下降了1%。
例2 某服裝店因搬遷,店內(nèi)商品八折銷售。苗苗買了一件衣服用去52元,已知衣服原來(lái)按期望盈利30%定價(jià),那么該店是虧本還是盈利?虧(盈)率是多少?
解 要知虧還是盈,得知實(shí)際售價(jià)52元比成本少多少或多多少元,進(jìn)而需知成本。因?yàn)?2元是原價(jià)的80%,所以原價(jià)為(52÷80%)元;又因?yàn)樵瓋r(jià)是按期望盈利30%定的,所以成本為 52÷80%÷(1+30%)=50(元)
可以看出該店是盈利的,盈利率為 (52-50)÷50=4%
答:該店是盈利的.,盈利率是4%。
例3 成本0.25元的作業(yè)本1200冊(cè),按期望獲得40%的利潤(rùn)定價(jià)出售,當(dāng)銷售出80%后,剩下的作業(yè)本打折扣,結(jié)果獲得的利潤(rùn)是預(yù)定的86%。問(wèn)剩下的作業(yè)本出售時(shí)按定價(jià)打了多少折扣?
解 問(wèn)題是要計(jì)算剩下的作業(yè)本每?jī)?cè)實(shí)際售價(jià)是原定價(jià)的百分之幾。從題意可知,每?jī)?cè)的原定價(jià)是0.25×(1+40%),所以關(guān)鍵是求出剩下的每?jī)?cè)的實(shí)際售價(jià),為此要知道剩下的每?jī)?cè)盈利多少元。剩下的作業(yè)本售出后的盈利額等于實(shí)際總盈利與先售出的80%的盈利額之差,即
0.25×1200×40%×86%-0.25×1200×40%×80%=7.20(元)
剩下的作業(yè)本每?jī)?cè)盈利 7.20÷[1200×(1-80%)]=0.03(元)
又可知 (0.25+0.03)÷[0.25×(1+40%)]=80%
答:剩下的作業(yè)本是按原定價(jià)的八折出售的。
例4 某種商品,甲店的進(jìn)貨價(jià)比乙店的進(jìn)貨價(jià)便宜10%,甲店按30%的利潤(rùn)定價(jià),乙店按20%的利潤(rùn)定價(jià),結(jié)果乙店的定價(jià)比甲店的定價(jià)貴6元,求乙店的定價(jià)。
解 設(shè)乙店的進(jìn)貨價(jià)為1,則甲店的進(jìn)貨價(jià)為 1-10%=0.9
甲店定價(jià)為 0.9×(1+30%)=1.17
乙店定價(jià)為 1×(1+20%)=1.20
由此可得 乙店進(jìn)貨價(jià)為 6÷(1.20-1.17)=200(元)
乙店定價(jià)為 200×1.2=240(元)
答:乙店的定價(jià)是240元。
數(shù)學(xué)解題方法10
數(shù)學(xué)填空題解題技巧
數(shù)學(xué)填空題是一種只要求寫(xiě)出結(jié)果,不要求寫(xiě)出解答過(guò)程的客觀性試題,是中考數(shù)學(xué)中的三種?碱}型之一。它和選擇題同屬客觀性試題,它們有許多共同特點(diǎn):其形態(tài)短小精悍、跨度大、知識(shí)覆蓋面廣、考查目標(biāo)集中,形式靈活,答案簡(jiǎn)短、明確、具體,評(píng)分客觀、公正、準(zhǔn)確等。
填空題的類型一般可分為:完形填空題、多選填空題、條件與結(jié)論開(kāi)放的填空題。這說(shuō)明了填空題是數(shù)學(xué)中考命題重要的組成部分,它約占了整張?jiān)嚲淼娜种。因此,我們(cè)趥淇紩r(shí),既要關(guān)注這一新動(dòng)向,又要做好應(yīng)試的技能準(zhǔn)備。解題時(shí),要有合理的分析和判斷,要求推理、運(yùn)算的每一步驟都正確無(wú)誤,還要求將答案表達(dá)得準(zhǔn)確、完整。合情推理、優(yōu)化思路、少算多思將是快速、準(zhǔn)確地解答填空題的基本要求。
解答填空題的基本策略是準(zhǔn)確、迅速、整潔。準(zhǔn)確是解答填空題的先決條件,填空題不設(shè)中間分,一步失誤,全題無(wú)分,所以應(yīng)仔細(xì)審題、深入分析、正確推演、謹(jǐn)防疏漏,確保準(zhǔn)確;迅速是贏得時(shí)間獲取高分的必要條件,對(duì)于填空題的答題時(shí)間,應(yīng)該控制在不超過(guò)20分鐘左右,速度越快越好,要避免“超時(shí)失分”現(xiàn)象的發(fā)生;整潔是保住得分的充分條件,只有把正確的答案整潔的書(shū)寫(xiě)在答題紙上才能保證閱卷教師正確的批改,在網(wǎng)上閱卷時(shí)整潔顯得尤為重要。中考中的數(shù)學(xué)填空題一般是容易題或中檔題,數(shù)學(xué)填空題,絕大多數(shù)是計(jì)算型(尤其是推理計(jì)算型)和概念(性質(zhì))判斷型的.試題,應(yīng)答時(shí)必須按規(guī)則進(jìn)行切實(shí)的計(jì)算或者合乎邏輯的推演和判斷。求解填空題的基本策略是要在“準(zhǔn)”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、數(shù)行結(jié)合法、等價(jià)轉(zhuǎn)化法等。
方法解析
一、直接法
這是解填空題的基本方法,它是直接從題設(shè)條件出發(fā)、利用定義、定理、性質(zhì)、公式等知識(shí),通過(guò)變形、推理、運(yùn)算等過(guò)程,直接得到結(jié)果。它是解填空題的最基本、最常用的方法。使用直接法解填空題,要善于通過(guò)現(xiàn)象看本質(zhì),熟練應(yīng)用解方程和解不等式的方法,自覺(jué)地、有意識(shí)地采取靈活、簡(jiǎn)捷的解法。
二、特殊化法
當(dāng)填空題的結(jié)論唯一或題設(shè)條件中提供的信息暗示答案是一個(gè)定值時(shí),而已知條件中含有某些不確定的量,可以將題中變化的不定量選取一些符合條件的恰當(dāng)特殊值(或特殊函數(shù),或特殊角,圖形特殊位置,特殊點(diǎn),特殊方程,特殊模型等)進(jìn)行處理,從而得出探求的結(jié)論。這樣可大大地簡(jiǎn)化推理、論證的過(guò)程。
三、數(shù)形結(jié)合法
“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微!睌(shù)學(xué)中大量數(shù)的問(wèn)題后面都隱含著形的信息,圖形的特征上也體現(xiàn)著數(shù)的關(guān)系。我們要將抽象、復(fù)雜的數(shù)量關(guān)系,通過(guò)形的形象、直觀揭示出來(lái),以達(dá)到“形幫數(shù)”的目的;同時(shí)我們又要運(yùn)用數(shù)的規(guī)律、數(shù)值的計(jì)算,來(lái)尋找處理形的方法,來(lái)達(dá)到“數(shù)促形”的目的。對(duì)于一些含有幾何背景的填空題,若能數(shù)中思形,以形助數(shù),則往往可以簡(jiǎn)捷地解決問(wèn)題,得出正確的結(jié)果。
四、等價(jià)轉(zhuǎn)化法
通過(guò)“化復(fù)雜為簡(jiǎn)單、化陌生為熟悉”,將問(wèn)題等價(jià)地轉(zhuǎn)化成便于解決的問(wèn)題,從而得出正確的結(jié)果。
數(shù)學(xué)解題方法11
初中數(shù)學(xué)選擇題的解法的研究,可謂是仁者見(jiàn)仁,智者見(jiàn)智.當(dāng)然,僅僅有思路還是不夠的,“解題思路”在某種程度上來(lái)說(shuō),屬于理論上的“定性”,要想解具體的題目,還得有科學(xué)、合理、簡(jiǎn)便的方法.
1、直接法 . 有些選擇題是由計(jì)算題、應(yīng)用題、證明題、判斷題改編而成的.這類題型可直接從題設(shè)的.條件出發(fā),利用已知條件、相關(guān)公式、公理、定理、法則,通過(guò)準(zhǔn)確的運(yùn)算、嚴(yán)謹(jǐn)?shù)耐评怼⒑侠淼尿?yàn)證得出正確的結(jié)論,從而確定選項(xiàng)的方法.
2、篩選法 . 初中數(shù)學(xué)選擇題的解題本質(zhì)就是去偽存真,舍棄不符合題目要求的錯(cuò)誤答案,找到符合題意的正確結(jié)論.可通過(guò)篩除一些較易判定的、不合題意的結(jié)論,以縮小選擇的范圍,再?gòu)钠溆嗟慕Y(jié)論中求得正確的答案.如篩去不合題意的以后,結(jié)論只有一個(gè),則為應(yīng)選項(xiàng).
3、驗(yàn)證法 . 通過(guò)對(duì)試題的觀察、分析、確定,將各選項(xiàng)逐個(gè)代入題干中,進(jìn)行驗(yàn)證、或適當(dāng)選取特殊值進(jìn)行檢驗(yàn)、或采取其他驗(yàn)證手段,以判斷選項(xiàng)正誤的方法.
4、特殊值法 . 有些選擇題,用常規(guī)方法直接求解比較困難,若根據(jù)答案中所提供的信息,選擇某些特殊情況進(jìn)行分析,或選擇某些特殊值進(jìn)行計(jì)算,或?qū)⒆帜竻?shù)換成具體數(shù)值代入,把一般形式變?yōu)樘厥庑问,再進(jìn)行判斷往往十分簡(jiǎn)單.
5、圖象法 . 在解答選擇題的過(guò)程中,可先根椐題意,作出草圖,然后參照?qǐng)D形的作法、形狀、位置、性質(zhì),綜合圖象的特征,得出結(jié)論.
6、試探法 . 對(duì)于綜合性較強(qiáng)、選擇對(duì)象比較多的試題,要想條理清楚,可以根據(jù)題意建立一個(gè)數(shù)學(xué)模型,然后通過(guò)試探法來(lái)選擇,并注意靈活地運(yùn)用上述多種方法.
數(shù)學(xué)解題方法12
對(duì)于一道具體的習(xí)題,解題時(shí)最重要的環(huán)節(jié)是審題。
審題
認(rèn)真、仔細(xì)地審題。審題的第一步是讀題,這是獲取信息量和思考的過(guò)程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。讀題一旦結(jié)束,哪些是已知條件?求解的結(jié)論是什么?還缺少哪些條件,可否從已知條件中推出?在你的腦海里,這些信息就應(yīng)該已經(jīng)結(jié)成了一張網(wǎng),并有了初步的思路和解題方案,然后就是根據(jù)自己的思路,演算一遍,加以驗(yàn)證。有些學(xué)生沒(méi)有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開(kāi)始解題,結(jié)果常常是漏掉了一些信息,花了很長(zhǎng)時(shí)間解不出來(lái),還找不到原因,想快卻慢了。很多時(shí)候?qū)W生來(lái)問(wèn)問(wèn)題,我和他一起讀題,讀到一半時(shí),他說(shuō):“老師,我會(huì)了!
所以,在實(shí)際解題時(shí),應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。
初中數(shù)學(xué)解題方法之增加習(xí)題的難度
人們認(rèn)識(shí)事物的過(guò)程都是從簡(jiǎn)單到復(fù)雜,一步一步由表及里地深入下去。
增加習(xí)題的難度
應(yīng)先易后難,逐步增加習(xí)題的難度。一個(gè)人的能力也是通過(guò)鍛煉逐步增長(zhǎng)起來(lái)的。若簡(jiǎn)單的問(wèn)題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。養(yǎng)成了習(xí)慣,遇到一般的難題,同樣可以保持較高的解題速度。而我們有些學(xué)生不太重視這些基本的、簡(jiǎn)單的習(xí)題,認(rèn)為沒(méi)有必要花費(fèi)時(shí)間去解這些簡(jiǎn)單的習(xí)題,結(jié)果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無(wú)策,解題速度就更不用說(shuō)了。
其實(shí),解簡(jiǎn)單容易的習(xí)題,并不一定比解一道復(fù)雜難題的勞動(dòng)強(qiáng)度和效率低。比如,與一個(gè)人扛一大袋大米上五層樓相比,一個(gè)人拎一個(gè)小提包也上到五層樓當(dāng)然要輕松得多。但是,如果扛米的'人只上一次,而拎包的人要來(lái)回上下50次、甚至100次,那么,拎包人比扛米人的勞動(dòng)強(qiáng)度大。所以在相同時(shí)間內(nèi),解50道、100道簡(jiǎn)單題,可能要比解一道難題的勞動(dòng)強(qiáng)度大。再如,若這袋大米的重量為100千克,由于太重,超出了扛米人的能力,以至于扛米人費(fèi)了九牛二虎之力,卻沒(méi)能扛到五樓,雖然勞動(dòng)強(qiáng)度很大,卻是勞而無(wú)功。而拎包人一次只拎10千克,15次就可以把150千克的大米拎到五樓,勞動(dòng)強(qiáng)度也許并不很大,而效率之高卻是不言而喻的。由此可見(jiàn),去解一道難以解出的難題,不如去解30道稍微簡(jiǎn)單一些的習(xí)題,其收獲也許會(huì)更大。
因此,我們?cè)趯W(xué)習(xí)時(shí),應(yīng)根據(jù)自己的能力,先去解那些看似簡(jiǎn)單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會(huì)達(dá)到事半功倍的效果。
數(shù)學(xué)解題方法13
解題的規(guī)范包括審題規(guī)范、語(yǔ)言表達(dá)規(guī)范、答案規(guī)范及解題后的反思四個(gè)方面。
一、審題規(guī)范
審題是正確解題的關(guān)鍵,是對(duì)題目進(jìn)行分析、綜合、尋求解題思路和方法的過(guò)程,審題過(guò)程包括明確條件與目標(biāo)、分析條件與目標(biāo)的聯(lián)系、確定解題思路與方法三部分。
。1)條件的分析,一是找出題目中明確告訴的已知條件,二是發(fā)現(xiàn)題目的隱含條件并加以揭示。
目標(biāo)的分析,主要是明確要求什么或要證明什么;把復(fù)雜的目標(biāo)轉(zhuǎn)化為簡(jiǎn)單的目標(biāo);把抽象目標(biāo)轉(zhuǎn)化為具體的目標(biāo);把不易把握的目標(biāo)轉(zhuǎn)化為可把握的目標(biāo)。
。2)分析條件與目標(biāo)的`聯(lián)系。每個(gè)數(shù)學(xué)問(wèn)題都是由若干條件與目標(biāo)組成的。解題者在閱讀題目的基礎(chǔ)上,需要找一找從條件到目標(biāo)缺少些什么?或從條件順推,或從目標(biāo)分析,或畫(huà)出關(guān)聯(lián)的草圖并把條件與目標(biāo)標(biāo)在圖上,找出它們的內(nèi)在聯(lián)系,以順利實(shí)現(xiàn)解題的目標(biāo)。
。3)確定解題思路。一個(gè)題目的條件與目標(biāo)之間存在著一系列必然的聯(lián)系,這些聯(lián)系是由條件通向目標(biāo)的橋梁。用哪些聯(lián)系解題,需要根據(jù)這些聯(lián)系所遵循的數(shù)學(xué)原理確定。解題的實(shí)質(zhì)就是分析這些聯(lián)系與哪個(gè)數(shù)學(xué)原理相匹配。有些題目,這種聯(lián)系十分隱蔽,必須經(jīng)過(guò)認(rèn)真分析才能加以揭示;有些題目的匹配關(guān)系有多種,而這正是一個(gè)問(wèn)題有多種解法的原因。
二、語(yǔ)言敘述規(guī)范
語(yǔ)言(包括數(shù)學(xué)語(yǔ)言)敘述是表達(dá)解題程式的過(guò)程,是數(shù)學(xué)解題的重要環(huán)節(jié)。因此,語(yǔ)言敘述必須規(guī)范。規(guī)范的語(yǔ)言敘述應(yīng)步驟清楚、正確、完整、詳略得當(dāng),言必有據(jù)。數(shù)學(xué)本身有一套規(guī)范的語(yǔ)言系統(tǒng),切不可隨意杜撰數(shù)學(xué)符號(hào)和數(shù)學(xué)術(shù)語(yǔ),讓人不知所云。
三、答案規(guī)范
答案規(guī)范是指答案準(zhǔn)確、簡(jiǎn)潔、全面,既注意結(jié)果的驗(yàn)證、取舍,又要注意答案的完整。要做到答案規(guī)范,就必須審清題目的目標(biāo),按目標(biāo)作答。
四、解題后的反思
解題后的反思是指解題后對(duì)審題過(guò)程和解題方法及解題所用知識(shí)的回顧節(jié)思考,只有這樣,才能有效的深化對(duì)知識(shí)的理解,提高思維能力。
。1)有時(shí)多次受阻而后“靈感”突來(lái)。不論哪種情況,思維都有很強(qiáng)的直覺(jué)性,若在解題后及時(shí)重現(xiàn)一下這個(gè)思維過(guò)程,追溯“靈感”是怎樣產(chǎn)生的,多次受阻的原因何在,總結(jié)審題過(guò)程中的思維技巧,這對(duì)發(fā)現(xiàn)審題過(guò)程中的錯(cuò)誤,提高分析問(wèn)題的能力都有重要作用。
(2)這些方法的熟練程度密切相關(guān),學(xué)生在解題時(shí)總是用最先想到的方法,也是他們最熟悉的方法,因此,解題后反思一下有無(wú)其它解法,可使學(xué)生開(kāi)拓思路,提高解題能力。
數(shù)學(xué)解題方法14
高考數(shù)學(xué)臨場(chǎng)解題策略
的特點(diǎn)是以解題的高低為標(biāo)準(zhǔn)的一次性選拔,這就使得臨場(chǎng)發(fā)揮顯得尤為重要,研究和總結(jié)臨場(chǎng)解題策略,進(jìn)行應(yīng)試訓(xùn)練和輔導(dǎo),已成為輔導(dǎo)的重要內(nèi)容之一,正確運(yùn)用臨場(chǎng)解題策略,不僅可以預(yù)防各種障礙造成的不合理丟分和計(jì)算失誤及筆誤,而且能運(yùn)用科學(xué)的檢索,建立神經(jīng)聯(lián)系,挖掘和的潛能,考出最佳成績(jī)。
一、調(diào)理思緒,提前進(jìn)入數(shù)學(xué)情境
考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設(shè)數(shù)學(xué)情境,進(jìn)而醞釀數(shù)學(xué)思維,提前進(jìn)入“角色”,通過(guò)清點(diǎn)用具、暗示重要知識(shí)和方法、提醒常見(jiàn)解題誤區(qū)和自己易出現(xiàn)的錯(cuò)誤等,進(jìn)行針對(duì)性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強(qiáng)信心,使思維單一化、數(shù)學(xué)化、以平穩(wěn)自信、積極主動(dòng)的心態(tài)準(zhǔn)備應(yīng)考。
二、“內(nèi)緊外松”,集中注意,消除焦慮怯場(chǎng)
集中注意力是的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過(guò)重,則會(huì)走向反面,形成怯場(chǎng),產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開(kāi),這叫外松。
三、沉著應(yīng)戰(zhàn),確保旗開(kāi)得勝,以利振奮精神
良好的開(kāi)端是成功的一半,從考試的心理角度來(lái)說(shuō),這確實(shí)是很有道理的,拿到后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套,摸透題情,然后穩(wěn)操一兩個(gè)易題熟題,讓自己產(chǎn)生“旗開(kāi)得勝”的快意,從而有一個(gè)良好的開(kāi)端,以振奮精神,鼓舞信心,很快進(jìn)入最佳思維狀態(tài),即發(fā)揮心理學(xué)所謂的“門坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵(lì),穩(wěn)拿中低,見(jiàn)機(jī)攀高。
四、“六先六后”,因人因卷制宜
在通覽全卷,將簡(jiǎn)單題順手完成的情況下,情緒趨于穩(wěn)定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發(fā)揮臨場(chǎng)解題能力的黃金季節(jié)了。這時(shí),考生可依自己的解題習(xí)慣和基本功,結(jié)合整套試題結(jié)構(gòu),選擇執(zhí)行“六先六后”的戰(zhàn)術(shù)原則。
。保纫缀箅y。就是先做簡(jiǎn)單題,再做綜合題。應(yīng)根據(jù)自己的實(shí)際,果斷跳過(guò)啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對(duì)待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
。玻仁旌笊。通覽全卷,可以得到許多有利的積極因素,也會(huì)看到一些不利之處。對(duì)后者,不要驚慌失措。應(yīng)想到試題偏難對(duì)所有考生也難。通過(guò)這種暗示,確保情緒穩(wěn)定。對(duì)全卷整體把握之后,就可實(shí)施先熟后生的策略,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。
3.先同后異,就是說(shuō),先做同科同類型的題目,思考比較集中,知識(shí)和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過(guò)急、過(guò)頻的`跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力,
。矗刃『蟠蟆P☆}一般是信息量少、運(yùn)算量小,易于把握,不要輕易放過(guò),應(yīng)爭(zhēng)取在大題之前盡快解決,從而為解決大題贏得時(shí)間,創(chuàng)造一個(gè)寬松的心理基矗
。担赛c(diǎn)后面,近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問(wèn)漸難式的“梯度題”,解答時(shí)不必一氣審到底,應(yīng)走一步解決一步,而前面問(wèn)題的解決又為后面問(wèn)題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營(yíng),由點(diǎn)到面
。叮雀吆蟮。即在考試的后半段時(shí)間,要注重時(shí)間效益,如估計(jì)兩題都會(huì)做,則先做高分題;估計(jì)兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時(shí)間不足前提下的得分。
五、一“慢”一“快”,相得益彰
有些考生只知道考場(chǎng)上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達(dá),結(jié)果是思維受阻或進(jìn)入死胡同,導(dǎo)致失敗。應(yīng)該說(shuō),審題要慢,解答要快。審題是整個(gè)解題過(guò)程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認(rèn)識(shí),為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。
六、確保運(yùn)算準(zhǔn)確,立足一次成功
數(shù)學(xué)高考題的容量在120分鐘時(shí)間內(nèi)完成大。玻秱(gè)題,時(shí)間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟。假如速度與準(zhǔn)確不可兼得的說(shuō),就只好舍快求對(duì)了,因?yàn)榻獯鸩粚?duì),再快也無(wú)意義。
七、講求規(guī)范書(shū)寫(xiě),力爭(zhēng)既對(duì)又全
考試的又一個(gè)特點(diǎn)是以卷面為唯一依據(jù)。這就要求不但會(huì)而且要對(duì)、對(duì)且全,全而規(guī)范。會(huì)而不對(duì),令人惋惜;對(duì)而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)非因素失分的一大方面。因?yàn)樽舟E潦草,會(huì)使閱卷的第一印象不良,進(jìn)而使閱卷認(rèn)為考生不認(rèn)真、基本功不過(guò)硬、“感情分”也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”。“書(shū)寫(xiě)要工整,卷面能得分”講的也正是這個(gè)道理。
八、面對(duì)難題,講究策略,爭(zhēng)取得分
會(huì)做的題目當(dāng)然要力求做對(duì)、做全、得,而更多的問(wèn)題是對(duì)不能全面完成的題目如何分段得分。下面有兩種常用方法。
。保辈浇獯稹(duì)一個(gè)疑難問(wèn)題,確實(shí)啃不動(dòng)時(shí),一個(gè)明智的解題策略是:將它劃分為一個(gè)個(gè)子問(wèn)題或一系列的步驟,先解決問(wèn)題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫(xiě)幾步,每進(jìn)行一步就可得到這一步的分?jǐn)?shù)。如從最初的把文字語(yǔ)言譯成符號(hào)語(yǔ)言,把條件和目標(biāo)譯成數(shù)學(xué)表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動(dòng)點(diǎn)坐標(biāo),依題意正確畫(huà)出圖形等,都能得分。還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡(jiǎn)單情形等,都能得分。而且可望在上述處理中 高中語(yǔ)文,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。
。玻浇獯稹=忸}過(guò)程卡在一中間環(huán)節(jié)上時(shí),可以承認(rèn)中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過(guò)渡環(huán)節(jié)。若因時(shí)間限制,中間結(jié)論來(lái)不及得到證實(shí),就只好跳過(guò)這一步,寫(xiě)出后繼各步,一直做到底;另外,若題目有兩問(wèn),第一問(wèn)做不上,可以第一問(wèn)為“已知”,完成第二問(wèn),這都叫跳步解答。也許后來(lái)由于解題的正遷移對(duì)中間步驟想起來(lái)了,或在時(shí)間允許的情況下,經(jīng)努力而攻下了中間難點(diǎn),可在相應(yīng)題尾補(bǔ)上。
九、以退求進(jìn),立足特殊,發(fā)散一般
對(duì)于一個(gè)較一般的問(wèn)題,若一時(shí)不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等?傊,退到一個(gè)你能夠解決的程度上,通過(guò)對(duì)“特殊”的思考與解決,啟發(fā)思維,達(dá)到對(duì)“一般”的解決。
十、執(zhí)果索因,逆向思考,正難則反
對(duì)一個(gè)問(wèn)題正面思考發(fā)生思維受阻時(shí),用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展。順向推有困難就逆推,直接證有困難就反證。如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。
十一、回避結(jié)論的肯定與否定,解決探索性問(wèn)題
對(duì)探索性問(wèn)題,不必追求結(jié)論的“是”與“否”、“有”與“無(wú)”,可以一開(kāi)始,就綜合所有條件,進(jìn)行嚴(yán)格的推理與討論,則步驟所至,結(jié)論自明。
十二、應(yīng)用性問(wèn)題思路:面—點(diǎn)—線
解決應(yīng)用性問(wèn)題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過(guò)冗長(zhǎng)敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”。如此將應(yīng)用性問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題。當(dāng)然,求解過(guò)程和結(jié)果都不能離開(kāi)實(shí)際背景。
高三數(shù)學(xué)一輪復(fù)習(xí)重頭戲:函數(shù)知識(shí)立體網(wǎng)絡(luò)
“函數(shù)”是高中數(shù)學(xué)中起聯(lián)接和支撐作用的主干知識(shí),也是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。其知識(shí)、觀點(diǎn)、思想和方法貫穿于高中代數(shù)的全過(guò)程,同時(shí)也應(yīng)用于幾何問(wèn)題的解決。因此,在高考中函數(shù)是一個(gè)極其重要的部分,而對(duì)函數(shù)的復(fù)習(xí)則是高三數(shù)學(xué)第一輪復(fù)習(xí)的重頭戲。
注重對(duì)概念的理解
函數(shù)部分的一個(gè)鮮明特點(diǎn)是概念多,對(duì)概念理解的要求高。而在實(shí)際的復(fù)習(xí)中,學(xué)生對(duì)此可能不是很重視,其實(shí),概念能突出本質(zhì),產(chǎn)生解決問(wèn)題的方法。對(duì)概念不重視,題目一定也做不好。
就高考而言,直接針對(duì)函數(shù)概念的考題也不少,例如05年上海春季高考數(shù)學(xué)卷的第16題就是考察學(xué)生是否理解函數(shù)最大值的概念。在高中數(shù)學(xué)的代數(shù)證明問(wèn)題中,函數(shù)問(wèn)題是最多最突出的一個(gè)部分,如函數(shù)的單調(diào)性、奇偶性、周期性的證明等等,而用定義法判斷和證明這些性質(zhì)往往是最直接有效的方法。上海卷連續(xù)兩年都考查了這方面的內(nèi)容與方法,如06年文、理科的第22題,考查的是函數(shù)的單調(diào)性、值域與最值,07年的第19題,文科考察的是函數(shù)奇偶性的判斷與證明,理科在此基礎(chǔ)上還考察了函數(shù)單調(diào)性。
構(gòu)建知識(shí)、方法與技能網(wǎng)
當(dāng)問(wèn)到學(xué)生類似于“函數(shù)主要有哪些內(nèi)容?”等問(wèn)題時(shí),學(xué)生的回答大多是一些零散的數(shù)學(xué)名詞或局部的細(xì)節(jié),這說(shuō)明學(xué)生對(duì)知識(shí)還缺少整體把握。所以復(fù)習(xí)的首要任務(wù)是立足于教材,將高中所學(xué)的函數(shù)知識(shí)進(jìn)行系統(tǒng)梳理,用簡(jiǎn)明的圖表形式把基礎(chǔ)知識(shí)進(jìn)行有機(jī)的串聯(lián),以便于找出自己的缺漏,明確復(fù)習(xí)的重點(diǎn),合理安排復(fù)習(xí)計(jì)劃。
就函數(shù)部分而言,大體分為三個(gè)層次的內(nèi)容:1、函數(shù)的概念與基本性質(zhì),主要有函數(shù)的概念與運(yùn)算、單調(diào)性、奇偶性與對(duì)稱性、周期性、最值與值域、圖像等。2、一些簡(jiǎn)單函數(shù)的研究,主要是二次函數(shù)、冪、指、對(duì)函數(shù)等。3、函數(shù)綜合與實(shí)際應(yīng)用問(wèn)題,如函數(shù)-方程-不等式的關(guān)系與應(yīng)用,用函數(shù)思想解決的實(shí)際應(yīng)用問(wèn)題等。
當(dāng)然,在這個(gè)過(guò)程中也發(fā)現(xiàn),學(xué)生梳理知識(shí)的過(guò)程過(guò)于被動(dòng)、機(jī)械,只是將課本或是參考書(shū)中的內(nèi)容抄在本子上,缺少了自己的認(rèn)識(shí)與理解,將知識(shí)與方法割裂開(kāi)來(lái),整理的東西成了空中樓閣,自然沒(méi)什么用。這時(shí),就需對(duì)每一個(gè)內(nèi)容細(xì)化,問(wèn)問(wèn)自己復(fù)習(xí)這個(gè)內(nèi)容時(shí)需要解決好哪些問(wèn)題,以此為載體來(lái)提煉與總結(jié)基本方法。
以函數(shù)的單調(diào)性為例,可以從哪些問(wèn)題入手復(fù)習(xí)呢?問(wèn)題一:什么是函數(shù)的單調(diào)性?可以借助一些概念的辨析題來(lái)幫助理解。問(wèn)題二:如何判斷和證明一個(gè)函數(shù)在某個(gè)區(qū)間上的單調(diào)性?對(duì)這個(gè)問(wèn)題的解決,需要的知識(shí)基礎(chǔ)有:理解函數(shù)單調(diào)性的概念,熟知所學(xué)習(xí)過(guò)的各種基本函數(shù)(如一次函數(shù)、二次函數(shù)、反比例函數(shù)、冪、指、對(duì)函數(shù)等)的單調(diào)性,和函數(shù)(如y=x+ax(a≠0))以及簡(jiǎn)單的復(fù)合函數(shù)單調(diào)性等;镜姆椒ㄖ饕抢脝握{(diào)性的定義、以及不等式的性質(zhì)進(jìn)行判斷和證明。問(wèn)題三:函數(shù)的單調(diào)性有哪些簡(jiǎn)單應(yīng)用?主要的應(yīng)用是求函數(shù)的最值,此外還可能涉及到不等式、比較大小等問(wèn)題。最后還可以進(jìn)一步總結(jié)易錯(cuò)、易漏點(diǎn),如討論函數(shù)的單調(diào)性必須在其定義域內(nèi)進(jìn)行,兩個(gè)單調(diào)函數(shù)的積函數(shù)的單調(diào)性不確定等。
抓典型問(wèn)題強(qiáng)化訓(xùn)練
高三學(xué)生在復(fù)習(xí)中大都愿意花大量時(shí)間做題,追求解題技巧,雖然這樣做有一定的作用,但題目做得太多太雜,未必有利于基本方法的落實(shí)。其實(shí)對(duì)于每一個(gè)知識(shí)點(diǎn)都有典型問(wèn)題,抓住它們進(jìn)行訓(xùn)練,將同一知識(shí),同一方法的問(wèn)題集中在一起練習(xí),并努力使自己表達(dá)規(guī)范、正確,相信能達(dá)到更高效的復(fù)習(xí)效果。
還是以函數(shù)的單調(diào)性的判斷與證明為例,一般也就兩類典型問(wèn)題。第一是正確判斷與證明某個(gè)函數(shù)的單調(diào)性,寫(xiě)出單調(diào)區(qū)間,要注意函數(shù)的各種形式,如分式的(如y=x+32x+1),和函數(shù)(如y=x+(a≠0)),簡(jiǎn)單的復(fù)合函數(shù)(如y=log2(x2-2x-3)),以及帶有根式和絕對(duì)值的等等。第二是它的逆問(wèn)題,知道函數(shù)在某個(gè)區(qū)間上的單調(diào)性如何求字母參數(shù)的取值范圍,如函數(shù)y=ax2+x+2在區(qū)間[5,10]上遞增,求實(shí)數(shù)a的取值范圍等。
另一方面,可以在同一個(gè)問(wèn)題的背景下,自己做一些小小的變化與發(fā)展,從中做一些深入的探究。例如將函數(shù)y=log2(x2-2x-3)變化為y =loga(x2-2x-3)單調(diào)性會(huì)怎樣變化?如果變化為y=log2(ax2-2x-3)情況又如何?再?gòu)?fù)雜一些,如變化為y=loga(x2-2x -a)呢?反之,如果函數(shù)y=log2(ax2-2x-3)在區(qū)間(-∞,1)上單調(diào)遞減,a的取值范圍是什么?在此基礎(chǔ)上再想一想還能提出什么問(wèn)題來(lái)研究呢?例如函數(shù)y=log2(ax2-2x-3)的值域?yàn)镽,a的取值范圍是什么?函數(shù)y=log2(ax2-2x-3)是否可以有最大值,如果有,a的取值范圍是什么?對(duì)自己提出的問(wèn)題加以解決,能使自己的復(fù)習(xí)更有針對(duì)性,真正掌握解題的規(guī)律和方法,并幫助自己跳出盲目的題海戰(zhàn)。
數(shù)學(xué)解題方法15
1. 函數(shù)與方程的思想
函數(shù)與方程的思想是中學(xué)數(shù)學(xué)最基本的思想。所謂函數(shù)的思想是指用運(yùn)動(dòng)變化的觀點(diǎn)去分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),再運(yùn)用函數(shù)的圖像與性質(zhì)去分析、解決相關(guān)的問(wèn)題。而所謂方程的思想是分析數(shù)學(xué)中的等量關(guān)系,去構(gòu)建方程或方程組,通過(guò)求解或利用方程的性質(zhì)去分析解決問(wèn)題。
2. 數(shù)形結(jié)合的思想
數(shù)與形在一定的條件下可以轉(zhuǎn)化。如某些代數(shù)問(wèn)題、三角問(wèn)題往往有幾何背景,可以借助幾何特征去解決相關(guān)的代數(shù)三角問(wèn)題;而某些幾何問(wèn)題也往往可以通過(guò)數(shù)量的結(jié)構(gòu)特征用代數(shù)的方法去解決。因此數(shù)形結(jié)合的思想對(duì)問(wèn)題的解決有舉足輕重的作用。
3. 分類討論的思想
分類討論的思想之所以重要,原因一是因?yàn)樗倪壿嬓暂^強(qiáng),原因二是因?yàn)樗闹R(shí)點(diǎn)的涵蓋比較廣,原因三是因?yàn)樗膳囵B(yǎng)學(xué)生的分析和解決問(wèn)題的能力。原因四是實(shí)際問(wèn)題中常常需要分類討論各種可能性。
解決分類討論問(wèn)題的關(guān)鍵是化整為零,在局部討論降低難度。常見(jiàn)的類型
類型 1 學(xué)概念引起的的討論,如 實(shí)數(shù)、有理數(shù)、絕對(duì)值、點(diǎn)(直線、圓)與圓的位置關(guān)系等概念的分類討論 ;
類型 2 學(xué)運(yùn)算引起的討論,如不等式兩邊同乘一個(gè)正數(shù)還是負(fù)數(shù)的問(wèn)題;
類型 3 質(zhì)、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應(yīng)用引起的討論;
類型 4 形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關(guān)問(wèn)題引起的討論。
類型 5 些字母系數(shù)對(duì)方程的影響造成的分類討論,如二次函數(shù)中字母系數(shù)對(duì)圖象的影響,二次項(xiàng)系數(shù)對(duì)圖象開(kāi)口方向的影響,一次項(xiàng)系數(shù)對(duì)頂點(diǎn)坐標(biāo)的影響,常數(shù)項(xiàng)對(duì)截距的影響等。
如分類討論的案例一張長(zhǎng)為 9 厘米 ,寬為 8 厘米 的矩形紙板上,剪下一個(gè)腰長(zhǎng)為 5 厘米 的等腰三角形(要求等腰三角形的'一個(gè)頂點(diǎn)與矩形的一個(gè)頂點(diǎn)重合,其余兩個(gè)頂點(diǎn)在矩形的邊上),請(qǐng)計(jì)算剪下的等腰三角形的面積?
分類討論思想是對(duì)數(shù)學(xué)對(duì)象進(jìn)行分類尋求解答的一種思想方法,其作用在于克服思維的片面性,全面考慮問(wèn)題。分類的原則不重不漏。分類的步驟定討論的對(duì)象及其范圍;②確定分類討論的分類標(biāo)準(zhǔn); ③ 按所分類別進(jìn)行討論; ④ 歸納小結(jié)、綜合得出結(jié)論。注意動(dòng)態(tài)問(wèn)題一定要先畫(huà)動(dòng)態(tài)圖。
4 .轉(zhuǎn)化與化歸的思想
轉(zhuǎn)化與化歸市中學(xué)數(shù)學(xué)最基本的數(shù)學(xué)思想之一,數(shù)形結(jié)合的思想體現(xiàn)了數(shù)與形的轉(zhuǎn)化;函數(shù)與方程的思想體現(xiàn)了函數(shù)、方程、不等式之間的相互轉(zhuǎn)化;分類討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,所以以上三種思想也是轉(zhuǎn)化與化歸思想的具體呈現(xiàn)。
但是轉(zhuǎn)化包括等價(jià)轉(zhuǎn)化和非等價(jià)轉(zhuǎn)化,等價(jià)轉(zhuǎn)化要求在轉(zhuǎn)化的過(guò)程中前因和后果是充分的也是必要的;不等價(jià)轉(zhuǎn)化就只有一種情況,因此結(jié)論要注意檢驗(yàn)、調(diào)整和補(bǔ)充。轉(zhuǎn)化的原則是將不熟悉和難解的問(wèn)題轉(zhuǎn)為熟知的、易解的和已經(jīng)解決的問(wèn)題,將抽象的問(wèn)題轉(zhuǎn)為具體的和直觀的問(wèn)題;將復(fù)雜的轉(zhuǎn)為簡(jiǎn)單的問(wèn)題;將一般的轉(zhuǎn)為特殊的問(wèn)題;將實(shí)際的問(wèn)題轉(zhuǎn)為數(shù)學(xué)的問(wèn)題等等使問(wèn)題易于解決。
常見(jiàn)的轉(zhuǎn)化方法有
。 1 )直接轉(zhuǎn)化法問(wèn)題直接轉(zhuǎn)化為基本定理、基本公式或基本圖形問(wèn)題 .
。 2 )換元法“換元”把式子轉(zhuǎn)化為有理式或使整式降冪等,把較復(fù)雜的函數(shù)、方程、不等式問(wèn)題轉(zhuǎn)化為易于解決的基本問(wèn)題 .
。 3 )數(shù)形結(jié)合法原問(wèn)題中數(shù)量關(guān)系(解析式)與空間形式(圖形)關(guān)系,通過(guò)互相變換獲得轉(zhuǎn)化途徑 .
。 4 )等價(jià)轉(zhuǎn)化法問(wèn)題轉(zhuǎn)化為一個(gè)易于解決的等價(jià)命題,達(dá)到化歸的目的 .
。 5 )特殊化方法問(wèn)題的形式向特殊化形式轉(zhuǎn)化,并證明特殊化后的問(wèn)題,使結(jié)論適合原問(wèn)題 .
( 6 )構(gòu)造法造”一個(gè)合適的數(shù)學(xué)模型,把問(wèn)題變?yōu)橐子诮鉀Q的問(wèn)題 .
。 7 )坐標(biāo)法標(biāo)系為工具,用計(jì)算方法解決幾何問(wèn)題也是轉(zhuǎn)化方法的一個(gè)重要途徑
【數(shù)學(xué)解題方】相關(guān)文章:
數(shù)學(xué)解題方法11-28
(精選)數(shù)學(xué)解題方法11-28
數(shù)學(xué)常用的幾種經(jīng)典解題方法03-30
高一數(shù)學(xué)解題方法03-03
數(shù)學(xué)選擇題的解題技巧06-30
高一數(shù)學(xué)解題套路三篇03-08
各種題型解題方法09-01
對(duì)承辦方的感謝05-10
方兒茶的功效09-07